
Implementation of a Parallel Framework for Aerodynamic Design Optimization
on Unstructured Meshes

E.J. Nielsena*, W.K. Andersona†, and D.K. Kaushikb‡

aNASA Langley Research Center, MS 128, Hampton, VA 23681-2199

bComputer Science Department, Old Dominion University, Norfolk, VA 23529-0162

1. ABSTRACT

A parallel framework for performing aerodynamic design optimizations on unstructured
meshes is described. The approach utilizes a discrete adjoint formulation which has previously
been implemented in a sequential environment and is based on the three-dimensional Reynolds-
averaged Navier-Stokes equations coupled with a one-equation turbulence model. Here, only
the inviscid terms are treated in order to develop a basic foundation for a multiprocessor design
methodology. A parallel version of the adjoint solver is developed using a library of MPI-based
linear and nonlinear solvers known as PETSc, while a shared-memory approach is taken for the
mesh movement and gradient evaluation codes. Parallel efficiencies are demonstrated and the
linearization of the residual is shown to remain valid.

2. INTRODUCTION

As computational fluid dynamics codes have steadily evolved into everyday analysis tools, a
large focus has recently been placed on integrating them into a design optimization environ-
ment. It is hoped that this effort will bring about an ability to rapidly improve existing configu-
rations as well as aid the designer in developing new concepts.

Much of the recent work done in the area of CFD-based design optimization has focused on
adjoint methods. This approach has been found to be efficient in aerodynamic problems for
cases where the number of design variables is typically large and the number of cost functions
and/or flow field constraints is usually small. The adjoint formulation allows rapid computation
of sensitivity information using the solution of a linear system of equations, whose size is inde-
pendent of the number of design variables. Recent examples of this approach can be found in
[1-9].

In [8] and [9], a methodology for efficiently computing accurate aerodynamic sensitivity
information on unstructured grids is described. A discrete adjoint formulation has been

*Resident Research Associate, National Research Council.
†Senior Research Scientist, Computational Modeling and Simulation Branch, Aerodynamics, Aerothermodynam-
ics, and Acoustics Competency.
‡Graduate Student. Also, Mathematics and Computer Science Division, Argonne National Laboratory.

employed and the exact linearization of the residual has been explicitly demonstrated. Although
the differentiation of the flow solvers has been shown to be highly accurate, a major deficiency
uncovered by the work is the excessive CPU time required to determine adjoint solutions as well
as other associated tasks such as mesh movement. This drawback has hindered computations on
realistically-sized meshes to this point.

In an effort to mitigate this expense, the present work is aimed at the parallelization of the var-
ious steps of the design process. A previously-developed multiprocessor version of the flow
solver is employed, so that the current focus includes modification of the adjoint solver, as well
as appropriate treatment of the mesh movement and gradient evaluation codes. The goal of the
study is to demonstrate acceptable scalability as the number of processors is increased while
achieving results identical to that of the sequential codes. A discussion of the domain decompo-
sition procedure is presented. Speedup figures are established and consistent derivatives are
shown.

3. GOVERNING EQUATIONS

3.1. Flow Equations
The governing flow equations are the compressible Reynolds-averaged Navier-Stokes

equations10 coupled with the one-equation turbulence model of Spalart and Allmaras.11 The
present flow solver implementation is known as FUN3D and is available in both compressible
and incompressible formulations.12,13 The solvers utilize an implicit upwind scheme on
unstructured meshes. The solution is advanced in time using a backward-Euler time-stepping
scheme, where the linear system formed at each time step is solved using a point-iterative algo-
rithm, with options also available for using preconditioned GMRES.14 The turbulence model is
integrated all the way to the wall without the use of wall functions. This solver has been chosen
for its accuracy and robustness in computing turbulent flows over complex configurations.9,15

Although originally a sequential code, a parallel version has recently been constructed for invis-
cid flow using MPI and PETSc16 as described in [17]. This implementation utilizes a matrix-
free, preconditioned GMRES algorithm to solve the linear system.

3.2. Adjoint and Gradient Equations
The discrete adjoint equation is a linear system similar in form to that of the flow equations. A

pseudo-time term is added which allows a solution to be obtained in a time-marching fashion
using GMRES, much like that used in solving the flow equations. In the current work, all linear-
izations are performed by hand, and details of the solution procedure can be found in [9]. Once
the solution for the costate variables has been determined, the vector of sensitivity derivatives
can be evaluated as a single matrix-vector product.

4. DOMAIN DECOMPOSITION METHODOLOGY

In the current work, the mesh partitioner MeTiS18 is used to divide the original mesh into sub-
domains suitable for a parallel environment. Given the connectivities associated with each node
in the mesh and the number of partitions desired, MeTiS returns an array that designates a parti-
tion number for each node in the mesh. The user is then responsible for extracting the data struc-
tures required by the specific application.

Due to the gradient terms used in the reconstruction procedure, achieving second-order accu-

racy in the flow solver requires information from the neighbors of each mesh point as well as
their neighbors. In the present implementation, the gradients of the dependent variables are
computed on each mesh partition, then the results are scattered onto neighboring partitions. This
approach dictates that a single level of “ghost” nodes be stored on each processor. These ghost
nodes that are connected to mesh points on the current partition are referred to as “level-1”
nodes. Similarly, the neighbors of level-1 nodes that do not lie on the current partition are desig-
nated “level-2” nodes. This terminology is illustrated graphically in Figure 1.

The adjoint solver requires similar information; however, unlike the flow solver, residual con-
tributions must be written into off-processor memory locations associated with level-2 mesh
points. This implies that a second level of ghost information must be retained along partition
boundaries. The gather and scatter operations associated with these off-processor computations
for the flow and adjoint solvers are handled seamlessly using the PETSc toolkit described in a
subsequent section.

Software has been developed to extract the required information from a pre-existing mesh
based on the partitioning array provided by MeTiS. This domain decomposition operation is
done prior to performing any computations. The user is also able to read in existing subdomains
and their corresponding solution files and repartition as necessary. This capability is useful in
the event that additional processors become available or processors currently being employed
must be surrendered to other users. In addition, software has been developed that reassembles
partition information into global files and aids in post-processing the solutions.

5. PARALLELIZATION

Adapting the adjoint solver to the parallel environment has been performed using the MPI
message passing standard. In order to expedite code development, the Portable, Extensible
Toolkit for Scientific Computation (PETSc)16 has been employed, using an approach similar to
that taken in [17]. PETSc is a library of MPI-based routines that enables the user to develop par-
allel tools without an extensive background in the field. The software includes a number of
built-in linear and nonlinear solvers as well as a wide range of preconditioning options.

To parallelize the mesh movement and gradient evaluation codes, a shared-memory approach

Figure 1. Information required beyond partition boundaries.

Node on the current partition

Level-1 ghost node

Level-2 ghost node

Partition
Boundary

has been taken, since the primary hardware to be utilized is a Silicon Graphics Origin 2000 sys-
tem. In this approach, ghost information is exchanged across partition boundaries by loading
data into global shared arrays which are accessible from each processor. Simple compiler direc-
tives specific to the Origin 2000 system are used to spawn child processes for each partition in
the mesh.

6. SPEEDUP RESULTS

6.1. Adjoint Solver
For this preliminary work, the speedup obtained by parallelizing the adjoint solver is demon-

strated using an SGI Origin 2000 system. Here, an inviscid test case is run on an ONERA M6
wing. The mesh for this test consists of 357,900 nodes. The surface mesh contains 39,588
nodes, and is shown in Figure 2. The freestream Mach number is 0.5 and the angle of attack is

. The flow solver is converged to machine accuracy prior to solving the adjoint system. The
adjoint solution consists of seven outer iterations, each composed of a GMRES cycle utilizing
50 search directions and no restarts. Figure 3 shows the speedup obtained using an increasing
number of processors, and it can be seen that the solver demonstrates a nearly linear speedup for
this test case.

6.2. Mesh Movement
As the design progresses, the volume mesh must be adapted to conform to the evolving sur-

face geometry. Currently, this is done using a spring analogy as outlined in [8] and [9]. This pro-
cedure is also used to generate mesh sensitivity terms required for evaluating the gradient of the
cost function. The implementation of the spring approach requires a number of sweeps through
the mesh in order to modify the node coordinates throughout the entire field. Furthermore, in the
case of evaluating mesh sensitivities, this process must be repeated for each design variable. For

2°

Figure 2. Surface mesh for ONERA M6
wing.

Figure 3. Parallel speedup obtained for the
adjoint solver.

Linear
Actual

large meshes, this process can be a costly operation. Therefore, the method has been extended to
run across multiple processors using a shared-memory approach as outlined earlier.

Figure 4 shows the speedup obtained by running the mesh movement procedure on the
357,900-node ONERA M6 mesh using a varying number of processors. It can be seen from the
figure that the code exhibits a superlinear behavior. This is believed to be due to improved cache
efficiency as the size of the subdomains is reduced.

6.3. Gradient Evaluation
Once the flow and adjoint solutions have been computed, the desired vector of design sensitiv-

ities can be evaluated as a single matrix-vector product. For shape optimization, this procedure
requires the linearization of the residual with respect to the mesh coordinates at every point in
the field. Again, for large meshes, this computation is quite expensive. For this reason, a shared-
memory approach has been used to evaluate these terms in a parallel fashion.

The previously described ONERA M6 mesh is used to demonstrate the speedup of this imple-
mentation, and results obtained for the computation of a single sensitivity derivative are shown
in Figure 5. It can be seen that the procedure is generally 90-95% scalable for the case exam-
ined. Due to the large amount of memory required for the gradient computation, superlinear
speedup such as that shown in Figure 4 is not obtained for this case.

7. CONSISTENCY OF LINEARIZATION

The accuracy of the linearizations used in the sequential adjoint solver has previously been
demonstrated in [8] and [9]. In these references, sensitivity derivatives obtained using the
adjoint solver were shown to be in excellent agreement with results computed using finite differ-
ences. To confirm that these linearizations remain consistent through the port to the parallel
environment, sensitivity derivatives are shown in Table 1 for several design variables depicted in
Figure 6, where the geometric parameterization scheme has been described in [8] and [19].

Figure 4. Parallel speedup obtained for the
mesh movement code.

Linear
Actual

Figure 5. Parallel speedup obtained for the
gradient evaluation code.

Linear
Actual

Here, the cost function is a linear combination of lift and drag. Results are shown for both the
sequential and multiprocessor versions of the codes, using the flow conditions stated in the pre-
vious discussion. For the parallel results, eight processors are utilized. It can be seen that the
derivatives are in excellent agreement.

8. SUMMARY

A methodology for performing inviscid aerodynamic design optimizations on unstructured
meshes has been described. The approach utilizes the PETSc toolkit for the flow and adjoint
solvers, in addition to a shared-memory approach for the mesh movement and gradient evalua-
tion codes. Speedup results have been demonstrated for a large test case, and the linearizations
have been shown to remain valid.

Figure 6. Location of design variables for ONERA M6 wing.

Table 1
Sensitivity derivatives computed using the sequential and parallel versions of the adjoint solver.

Design Variable Sequential
Parallel

(8 CPU’s)

Camber #7 -0.241691 -0.241691

Thickness #5 -0.0204348 -0.0204348

Twist #2 0.0129824 0.0129824

Shear #4 0.0223495 0.0223495

C/T #7

C/T #8

C/T #9

Twist
Shear

#1
Twist
Shear

#2

Twist
Shear

#3
Twist
Shear

#4
Twist
Shear

#5

Camber
Thickness
#1

Camber
Thickness
#2

Camber
Thickness
#3

Camber
Thickness
#4

Camber
Thickness
#5

Camber
Thickness
#6

9. ACKNOWLEDGMENTS

The authors would like to thank David Keyes for his valuable help and suggestions on the
PETSc implementations of the flow and adjoint solvers.

10. REFERENCES

1. Anderson, W.K., and Bonhaus, D.L., “Aerodynamic Design on Unstructured Grids for Tur-
bulent Flows,” NASA TM 112867, June 1997.

2. Anderson, W.K., and Venkatakrishnan, V., “Aerodynamic Design Optimization on Unstruc-
tured Grids with a Continuous Adjoint Formulation,” AIAA Paper 97-0643, January 1997.

3. Jameson, A., Pierce, N.A., and Martinelli, L., “Optimum Aerodynamic Design Using the
Navier-Stokes Equations,” AIAA Paper 97-0101, January 1997.

4. Reuther, J., Alonso, J.J., Martins, J.R.R.A., and Smith, S.C., “A Coupled Aero-Structural
Optimization Method for Complete Aircraft Configurations,” AIAA Paper 99-0187, Janu-
ary 1999.

5. Elliott, J., and Peraire, J., “Aerodynamic Optimization on Unstructured Meshes with Vis-
cous Effects,” AIAA Paper 97-1849, June 1997.

6. Soemarwoto, B., “Multipoint Aerodynamic Design by Optimization,” Ph.D. Thesis, Delft
University of Technology, 1996.

7. Mohammadi, B., “Optimal Shape Design, Reverse Mode of Automatic Differentiation and
Turbulence,” AIAA Paper 97-0099, January 1997.

8. Nielsen, E.J., and Anderson, W.K., “Aerodynamic Design Optimization on Unstructured
Meshes Using the Navier-Stokes Equations,” AIAA Paper 98-4809, September 1998.

9. Nielsen, E.J., “Aerodynamic Design Sensitivities on an Unstructured Mesh Using the
Navier-Stokes Equations and a Discrete Adjoint Formulation,” Ph.D. Thesis, Virginia Poly-
technic Institute and State University, 1998.

10. White, F.M., Viscous Fluid Flow, McGraw-Hill, New York, 1974.
11. Spalart, P.R., and Allmaras, S.R., “A One-Equation Turbulence Model for Aerodynamic

Flows,” AIAA Paper 92-0439, January 1992.
12. Anderson, W.K., and Bonhaus, D.L., “An Implicit Upwind Algorithm for Computing Tur-

bulent Flows on Unstructured Grids,” Computers and Fluids, Vol. 23, No.1, 1994, pp. 1-21.
13. Anderson, W.K., Rausch, R.D., and Bonhaus, D.L., “Implicit/Multigrid Algorithms for

Incompressible Turbulent Flows on Unstructured Grids,” Journal of Computational Phys-
ics, Vol. 128, 1996, pp. 391-408.

14. Saad, Y., and Schultz, M.H., “GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems,” SIAM Journal of Scientific and Statistical Com-
puting, Vol. 7, July 1986, pp. 856-869.

15. Anderson, W.K., Bonhaus, D.L., McGhee, R., and Walker, B., “Navier-Stokes Computa-
tions and Experimental Comparisons for Multielement Airfoil Configurations,” AIAA
Journal of Aircraft, Vol. 32, No. 6, 1995, pp. 1246-1253.

16. Balay, S., Gropp, W.D., McInnes, L.C., and Smith, B.F. The Portable, Extensible Toolkit
for Scientific Computing, Version 2.0.22, http://www.mcs.anl.gov/petsc, 1998.

17. Kaushik, D.K., Keyes, D.E., and Smith, B.F., “On the Interaction of Architecture and Algo-
rithm in the Domain-Based Parallelization of an Unstructured Grid Incompressible Flow
Code,” Proceedings of the 10th International Conference on Domain Decomposition Meth-

ods, American Mathematical Society, August 1997, pp. 311-319.
18. Karypis, G., and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning

Irregular Graphs,” SIAM Journal of Scientific Computing, Vol. 20, No. 1, 1998, pp. 359-
392.

19. Samareh, J., “Geometry Modeling and Grid Generation for Design and Optimization,”
ICASE/LaRC/NSF/ARO Workshop on Computational Aerosciences in the 21st Century,
April 22-24, 1998.

